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ABSTRACT  

A healthy live birth is the aim of an IVF cycle. Even with all of the advancements made in assisted 

reproductive technology, it is still not possible to anticipate an IVF cycle's outcome with any degree 

of accuracy. The process used to choose an embryo for transfer is one explanation for this. The 

conventional approach to determining which embryo to transplant and assessing embryo quality is 

morphological examination. IVF success rates are subpar as a result of the inter- and intra-observer 

variability caused by this subjective way of evaluating embryos. It is customary to transfer many 

embryos in order to get around this, which could lead to high-risk multiple pregnancies. 

The results are still not ideal, despite the introduction of pre-implantation genetic testing for 

aneuploidy and time-lapse incubators to assist raise the likelihood of a live birth. In order to enhance 

the success of in vitro fertilisation (IVF), artificial intelligence (AI) is being used more and more in 

the medical industry. Numerous research works have been released that explore the application of AI 

as an automated, objective method for evaluating embryos. The most current developments in AI for 

embryology are outlined in this overview. Several methods have been developed recently that use 

deep learning and artificial intelligence (AI) to enhance and automate the process.Artificial 

intelligence (AI) algorithms are trained to automatically rate embryos according to their likelihood of 

a successful implantation based on pictures of embryos with known implantation data (KID). A 

sizable dataset from 18 IVF centres, totaling 115,832 embryos—14,644 of which were transplanted 

KID embryos—was used to train and assess the model. It was demonstrated that the completely 

automated iDAScore v1.0 model outperformed a cutting-edge manual embryo selection approach by 

at least as much. Additionally, biases resulting from inter- and intraobserver variation are eliminated 

when embryo grading is fully automated, which implies less manual evaluations. 

Keywords:In Vitro Fertilisation (IVF), Artificial Intelligence (AI),Known Implantation Data (KID) 

 

1.INTRODUCTION 

Artificial intelligence (AI) has had a significant impact on in vitro fertilisation (IVF) research and 

innovation during the past few years. AI applications have the potential to support or even 

completely automate in vitro fertilisation (IVF) processes in the near future. These processes include 

gamete quality assessment, sperm selection during intracytoplasmic sperm injection (ICSI), oocyte 

collection, donor matching, patient stimulation protocols, and the selection and ranking of embryos 

for cryopreservation and transfer [1]. Additionally, by implementing predictive maintenance in IVF 

equipment and automatically extracting and analysing important performance data to undertake 

continuous quality control, AI may aid in the optimisation and standardisation of clinical procedures. 

Identifying the most viable embryo for transfer through embryo assessment has been a difficult task 

since the beginning of in vitro fertilisation (IVF).Continuous monitoring of embryo growth in vitro 

has been made possible by the introduction of time-lapse photography into clinical procedures [1]. 

This has made it possible to identify morphological alterations and events at their precise time of 

occurrence [2].Numerous models of embryo selection have been devised [3–7] based on these 

morphokinetic characteristics. Both blastocyst prediction [8, 9], genetic status [10–12], gestational 

sacs [4], and live birth [13–15] were the endpoints of these models. When time-lapse and 

morphokinetic selection are utilised instead of normal incubation, investigations have generally 

demonstrated an improvement [16, 17], while some studies have discovered that internal model 

validation is necessary before usage[18]. 

 

2.RELATED WORK 

Many couples and individuals are turning to assisted reproductive treatments in order to help with 

conception as a result of the general decline in worldwide fertility (GBD, 2018). Sadly, only about 
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20–30% of IVF attempts result in a pregnancy (Wang and Sauer, 2006), which puts a heavy 

emotional and financial burden on those trying to conceive. The quality of the embryos produced 

during the IVF procedure is one of the most important factors in determining the success of the 

pregnancy, and the embryo selection process is crucial to guaranteeing the patient the quickest 

possible time to conception. Improving the selection of embryos for uterine transfer during in vitro 

fertilisation (IVF) is highly motivated. 

Currently, choosing embryos is a manual procedure that involves skilled clinical embryologists 

examining each embryo under an optical light microscope to visually analyse its morphological 

traits. The Gardner Scale (Gardner and Sakkas, 2003) is the most widely used scoring system among 

embryologists. It assesses and grades morphological characteristics such inner cell mass (ICM) 

quality, trophectoderm quality, and embryo developmental advancement using an alphanumeric 

scale. The considerable degree of subjectivity and intra- and inter-operator variability that exists 

across embryologists of varying skill levels is one of the main issues in embryo grading (Storr et al., 

2017).AI algorithms and their applications in IVF have been evaluated in a number of publications 

[2–8]. However, as embryo evaluation and selection is the most actively researched application of AI 

in IVF at the moment—more than ten publications have been published in 2020—we specifically 

focus on this topic in this work. For over ten years, research has been conducted on automated 

embryo evaluation utilising machine learning or computer vision based on embryo photos [9, 10]. 

However, a lot of the articles from the last few years have been more concerned with 

competitiveness and commercialization than with methodological innovations and technical aspects 

of AI [11–15]. Rather, it appears that they are more concerned in presenting big datasets, high 

performance values derived from several metrics, and the capacity to outperform human and 

embryologist performance. Studies differ greatly in their clinical objectives and evaluation 

techniques, and occasionally performance comparisons are based on entirely distinct data 

foundations (e.g., patient demographics, unbalanced data, sub-cohorts, etc.). It has therefore become 

obvious that the research community. The goal of the current clinical study was to create and 

evaluate an assessment that uses non-invasive artificial intelligence (AI). 

Furthermore, this strategy is too expensive for many laboratories and clinics due to the need for 

specialised time-lapse imaging apparatus, which further restricts the technique's widespread 

application. Using single static two-dimensional pictures obtained by optical light microscopy 

techniques, the current clinical experiment aimed to design and test a non-invasive artificial 

intelligence (AI)-based assessment strategy to support embryo selection during IVF. In order to 

develop a reliable model for the study of Day 5 embryos (blastocysts) and the prediction of clinical 

pregnancy outcomes, computer vision image processing techniques and deep learning were used. 

 

3.METHODOLOGY 

The embryo population and the end result used for training and, more crucially, evaluation are 

critical information to have when comparing AI models. The AI models utilised for embryo 

assessment are characterised in this paper using a population-outcome scheme based on their data 

foundation. The four distinct attributes that comprise the system are depicted in Figure 1. 

•Fertilization: Which procedure or methods of fertilisation were used? ICSI, IVF, or both? 

 • Culture: What was the duration of the embryos' incubation? (For instance, five days) 

 • Sub-cohort : Which embryos from the available pool were included in the sub-cohort? (For 

example, euploid, fresh, cryopreserved blastocysts, hatched blastocysts, etc.)  

• Result: What was the endpoint that was measured? For instance, a live birth or a foetal heartbeat 

While the outcome specifies the clinical goal (or ground truth) that the model was tested against, the 

embryo population is defined by the first three variables and describes which embryos were included 

in a study. For example, the ICSI-D5/D6-* embryo population and live birth outcome would be 

reported in a study predicting live birth on all embryos transferred on day 5 or 6 after fertilisation by 

ICSI. Only transplanted embryos were taken into consideration by using live birth as the outcome. 
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Figure 1: example scheme for reporting embryo population and outcome. 

An embryo viability score of 50% or more was deemed viable for the AI model, whereas a score of 

less than 50% was deemed non-viable. At the moment the picture was taken, Day 5 blastocysts' 

scores were reported by the embryologist. These results were grouped into "likely viable" and "likely 

non-viable" groups, which served as the basis for the scoring bands. This generalisation made it 

possible to compare the AI model's (viable/non-viable) predictions with the binary forecasts made by 

the embryologists. The Gardner scale of morphokinetic grading (Gardner and Sakkas, 2003) served 

as the basis for the embryologists' scoring system. Each letter (A–E) represented the grade of the 

embryo's trophectoderm and ICM.A description of the embryo's developmental stage leading up to 

hatching or a numerical score was also provided. Following the sequence of increasing embryonic 

development, numbers were assigned: 1. Denotes the beginning of cavitation; 2. Early blastocyst; 3. 

Full blastocyst; and 4. Expanded blastocyst5 is the blastocyst hatching. An early blastocyst (>2) was 

thought to be the embryo's developmental stage if none was specified. By assigning a numerical 

score between 1 and 5 to the embryologist's evaluation and, correspondingly, splitting the AI model's 

inferences into five equal bands labelled 1 to 5 (from the least inference to the maximum inference), 

comparisons of embryo viability ranking were made. An image of an embryo was considered to be in 

"concordance" if both the AI model and the embryologist assigned the same rating to it.However, 

this result was marked as "model correct" if the AI model produced a higher rank than the 

embryologist and the ground-truth outcome was recorded as viable, or if the AI model produced a 

lower rank than the embryologist and the ground-truth outcome was documented as ineffective. 

Similarly, an outcome was marked as "embryologist correct" if the AI model produced a lower rank 

than the embryologist and the ground-truth outcome was reported as viable, or if the AI model 

produced a higher rank and the outcome was recorded as non-viable. 

Image processing techniques for computer vision .The pre-processing step was applied to all image 

data, as described below. These techniques for computer vision image processing were applied 

during the model-building process and included into the finished AI model. 

To guarantee that every image was encoded in a 3-channel format (such as RGB), the alpha channel 

was removed from each one. This process preserved the image's visual integrity while removing 

extra transparency map-related information. These areas of the picture were not utilised. – Every 

image was resized to square proportions, so that each side matched the longest side of the source file. 

In addition to guaranteeing that no important parts of the image were cropped, this procedure made 

sure that the image dimensions were uniform, comparable, and compatible with deep learning 

techniques, which specifically demand square dimension images as input. – By taking the mean of 

each RGB channel and dividing it by its mean value, each image's RGB colour was normalised. 

Then, each channel was multiplied by a constant 100/255 number to guarantee that each image's 

mean value in RGB space equaled (100, 100, 100). This stage made sure that each image's brightness 

was normalised and that colour biases were suppressed. After then, each picture was cropped so that 

the embryo's centre was in the centre of each one. The process involved determining the optimal 

ellipse function from an elliptical Hough transform, which was computed using the image's binary 

threshold map.  The technique works by first identifying the hard border of the embryo in the image, 

then cropping the new image's square border so that the new vision's width and height encircle the 

ellipse's largest radius, and the ellipse's centre becomes the new image's centre. Then, before 

training, each image was scaled to a lower resolution. – Boundary-based segmentation was one of 

the numerous pre-processing steps that images went through in order to train certain models. This 

procedure works by isolating the region of interest—that is, the embryo—from the background of the 

image and enabling masking, which focuses the model on categorising the embryo's overall 

morphological shape.Lastly, since deep learning models require this data structure, each image was 

converted to a tensor rather than a visually displayable image. Standard pre-trained Image Netvalues, 
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mean (0.485,0.456,0.406) and standard deviation (0.299, 0.224, 0.225) were used to get Tensor 

Normalisation. An example embryo image processed through the first six pre-processing processes 

mentioned above is shown in Figure 1. 

 
 

 

 

 

 

 

 

 

 

 

 

  

Flow chart for model creation and selection methodology. 

The methodology   starts from data collection. Each step   summarizes the components task used for 

development of the final AI model. After image Processing and segmentation  ,the image were split 

into datasets and the training dataset prepared by image augmentation. The highest performing 

individual models were considered  

            Data Collection 

Image Pre- Processing 

Splitting into dataset 

Image augmentation 

Model architecture 

consideration 

Model  selection 
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4.MODEL ARCHITECTURES CONSIDERED 

In order to train the AI model, a variety of deep learning and computer vision/machine learning 

techniques were assessed. Deep learning designs including ResNet-18, ResNet-50, and ResNet-101 

(Heetal., 2016) and highly linked networks like DenseNet-121 and DenseNet-161 (Huang et al., 

2017) were found to have the greatest impact on the classification of embryo viability. When 

evaluated separately, these architectures proved to be more reliable than other kinds of models. Other 

deep learning architectures, such as Inception-ResNetV2 and Inception-V4 (Szegedy et al., 2016), 

were also evaluated; however, because of their lower individual performance, they were not included 

in the final AI model.Additionally assessed were computer vision/machine learning models that 

combined the computation and extraction of computer vision features, such as random forests 

(Breiman, 2001) and support vector machines (Hearst, 1998). But when tested separately, these 

techniques produced lower accuracy and less translatability than deep learning techniques, and as a 

result, they were left out of the final AI model ensemble. See the section on the model selection 

procedure for further details. 

 

5.DESCRIPTION OF DATA 

The investigation includes retrospective data from 18 clinics worldwide from 2011 to 2019. The 

clinics were chosen without the use of any particular techniques. The total number of embryos, the 

number of transplanted embryos, and the average age of the females for each clinic are listed in 

Table 1. Every piece of data used in the research was de-identified and retrospective.  

The Act on Research Ethics Review of Health Research Projects in Denmark (Consolidation Act No. 

1338 of September 1, 2020) determined that the study in question was not required to be reported to 

the National Committee on Health Research Ethics. 
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6.RESULTS 

6.1 INITIAL EXPERIMENTS 

Three 5-fold cross validation experiments were conducted in order to examine the impact of the 

embryo sampling strategy used in the training data set. The model was trained only on transplanted 

KID embryos in the first two studies. These embryos were either oversampled with positive samples 

(50 percent FH+ and 50 percent FH-) or sampled based on actual prevalence (30% FH+ and 70% 

FH-). In the third experiment, the model was trained using oversampled positive data (50 percent 

FH+, 10 percent FH-, and 40 percent discarded) and discarded embryos pseudo-labeled as FH-. For 

each of the five folds, the performance was assessed on transplanted KID embryos in the validation 

data set. Table 2 shows that the mean AUC of the three distinct sampling procedures did not change 

significantly (p > 0.05). 

Evaluations were also made on each embryo's overall performance. Compared to the other two 

sample procedures, the strategy that included discarded embryos had a considerably higher mean 

AUC (p < 0.005). When discarded embryos were excluded from the two techniques, there was no 

discernible difference in overall performance. For each of the three techniques, there were distinct 

patterns in the score distribution of the FH+, FH-, and rejected embryos (S1 Fig). The score 

distribution of abandoned embryos overlapped with the scores of transplanted FH- and FH+ embryos 

for models that were exclusively trained on KID embryos. Conversely, there was less overlap 
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between the transplanted embryos and the discarded embryos for models trained on both KID and 

discarded embryos. The following tests were conducted using a combination of KID and abandoned 

embryos, with a sampling consisting of 50% FH+, 10% FH-, and 40% discarded embryos, based on 

the results of these cross-validation trials.\ 

6.2 FINAL MODEL  

The independent test data set, which was not used for training, was used for all ensuing analyses. In 

total, 17,249 embryos were included in this data collection, of which 2,212 were transferred embryos 

with known outcomes (KID embryos). Using AUC, the sorting performance of the entire model was 

assessed. Table 3 shows that the AUC for KID embryos was 0.67, with a 95% confidence interval of 

0.64–0.69. The AUC was 0.95 with a 95% confidence interval of 0.95–0.96 if the entire cohort was 

taken into account. 

6.3 SUB-GROUP ANALYSIS 

The patient age (for the groups <30, 30–34, 35–39, and >39 years), insemination technique (IVF or 

ICSI), incubation period (5 or 6 days), and fresh versus cryopreserved embryo transfer were the 

subgroups that were studied (Table 3). The AUC for KID embryos varied by age group, with the age 

group of 30-34 years having the lowest AUC, ranging from 0.63 to 0.69. The AUC for ICSI and IVF, 

in terms of the method of insemination, was 0.69 and 0.67, respectively. For D5 and D6, the AUC 

was 0.65 and 0.66, respectively, for the duration of incubation. Compared to fresh transfers, which 

had an AUC of 0.69, cryopreserved embryos had a substantially lower AUC of 0.65. 

6.4 CLINIC HOLD-OUT TEST 

A clinic hold-out test was conducted to look at how the selected model architecture and training data 

generalise to new clinics. Table 4 shows that the AUCs for each clinic ranged from 0.60 to 0.75. The 

AUC was substantially lower for clinics 1 and 4 than it was for the remainingclinics in the test data. 

 
 

7.Discussion 

7.1 MODEL TRAINING 

A primary issue that arises when developing models for embryo selection using implantation data is 

that a small portion of the entire cohort is assigned a known result. Since the fate of the remaining 

embryos is unknown, they are not marked. Additionally, because negative labels predominate over 

positive labels, the tagged embryos are frequently imbalanced. Potential biases may result from these 

characteristics of the training data and the training techniques[49]. To evaluate three distinct sample 

strategies for handling unbalanced data and missing labels, we have studied these biases. 

Specifically, we have trained on KID embryos without any oversampling, on KID embryos with 

FH+ oversampling, and on both KID embryos and pseudo-labelled discarded embryos.When tested 

on KID embryos, the results demonstrated that the inclusion of rejected embryos had no impact on 

performance. Nevertheless, it was evident from an evaluation of all embryos that there was a 

significant improvement in the ability to identify inferior embryos (Table 2 and S1 Fig). Therefore, 

generally speaking, using rejected embryos in a model training will provide a completely automated 

assessment that is relevant to every embryo in a cohort. On the other hand, if models are trained 

solely on KID embryos, the user has to identify transferable embryos beforehand in order to utilise 

the model. 
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7.2 FINAL MODEL 

The Compared to the IVY model's 0.93 AUC, the sorting ability for the entire cohort had an AUC of 

0.95 [35]. It should be mentioned that every clinic in the IVY model provided data for this study. 

The total number of embryos increased from 8,836 to 115,832, the number of embryos with known 

implantation data (KID) increased from 1,773 to 14,644, and the number of FH+ embryos increased 

from 694 to 4,337 due to the addition of additional new data from these clinics and five additional 

clinics in this investigation.  

 
Figure 3: graph for all embryos 

 
figure 4: graph for transferred embryos 
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Therefore, even better performance and resilience are achieved because the present data set was 

more than six times larger than the data set used to train the IVY model. As far as we are aware, this 

is the biggest data collection available for use in creating an embryo selection model. 

Compared to the sorting ability for the entire cohort, which had an AUC of 0.95, the model's sorting 

abilities for KID embryos had an AUC of 0.67. This discrepancy is predicted since it is far more 

challenging to separate good morphology blastocysts from the rest of the cohort, which consists of a 

spectrum of embryos that have been arrested from good morphology blastocysts. The purpose of the 

model determines which measure is most pertinent. The high AUC for sorting the entire cohort is the 

most important metric if the goal is to have a completely automated algorithm that sorts between all 

embryos. The lower AUC for sorting solely within the KID embryos is the most significant, though, 

if the user prescreens the embryos to identify possible transfer candidates. We suggest that both 

metrics be included in future publications since they are pertinent to embryo selection algorithms and 

because their actual clinical environment will determine their practical application. 

 

8 SUB-GROUP ANALYSIS  

It is crucial to look at any potential bias within the data set's sub-groups when developing a selection 

model that will be applied to a variety of clinical settings, patients, and cultural circumstances. The 

AUC of the overall ROC curve was within the 95% confidence interval for almost all subgroups. The 

only sub-group with a considerably lower AUC than the others was the cryopreserved sub-group. 

This is most likely because a successful implantation is dependent on other processes (such as the 

vitrification/warming and subsequent endometrial preparation). As a result, the sorting gets harder, 

which lowers the AUC. As far as we are aware, no alternative selection methods have been tried with 

various subsets in a sizable, independent data set. It is crucial to verify that models perform similarly 

across various subsets and are free from general biases. It becomes much more crucial to test on age 

sub-groups when an age parameter is used in a selection model. Given that age is one of the best 

indicators of a successful implantation, its inclusion will undoubtedly greatly enhance the overall 

performance of the model. Age may not, however, enhance the sorting ability at the treatment level 

(that is, the embryo cohort of a single patient), which is essentially what an embryo selection model 

is all about. Age is a factor that is input into the models of both the STORK algorithm [28] and the 

AIR E [32]. But since no analysis of age subgroups was done, it is still unknown how well these 

models can categorise patients based on their course of treatment. A subset of the training data is 

used to test the model as part of the sub-group analysis, which is an internal validation process [50]. 

This could provide a positive performance estimate as the testConsidering potential bias among the 

sub-groups of the data set is essential for creating a selection model that will be used with a range of 

patients, clinical settings, and cultural contexts. For nearly all subgroups, the total ROC curve's AUC 

fell inside the 95% confidence interval. The cryopreserved sub-group was the only one with a 

significantly lower AUC than the others. This is most likely due to the fact that other procedures—

like the vitrification/warming and subsequent endometrial preparation—are necessary for a 

successful implantation. Consequently, the sorting becomes more difficult, lowering the AUC. To 

the best of our knowledge, no other selection techniques have been used to different subsets within a 

large, independent data set. addressed using an external validation, which is even more robust and 

involves testing the model under novel circumstances like new clinics, time periods, procedures, or 

populations that weren't employed during model development [50]. Another method of internal 

validation is the geographic validation, often known as the clinic hold-out test. 

Hold-out test in the clinic Prior to clinical application, a number of studies have demonstrated the 

necessity of evaluating selection models on internal data [18, 51]. We employed a clinical hold-out 

validation technique in this investigation, where the model was tested on a particular clinic after it 

had been trained on data excluding it. Table 4 illustrates how these models sorted similarly, with 

most falling within the 95% confidence interval of the However, as no age sub-group analysis was 

done, it is still unknown how well these models sorted at the treatment level. A subset of the training 

data is used to test the model as part of the sub-group analysis, which is an internal validation 

process [50]. This could provide a positive performance estimate as the testConsidering potential 

bias among the sub-groups of the data set is essential for creating a selection model that will be used 

with a range of patients, clinical settings, and cultural contexts. For nearly all subgroups, the total 

ROC curve's AUC fell inside the 95% confidence interval. The cryopreserved sub-group was the 



170                                                      Vol.19, No.02(IV), July-December :  2024 

only one with a significantly lower AUC than the others. This is most likely due to the fact that other 

procedures—like the vitrification/warming and subsequent endometrial preparation—are necessary 

for a successful implantation. Consequently, the sorting becomes more difficult, lowering the AUC. 

To the best of our knowledge, no other selection techniques have been used to different subsets 

within a large, independent data set. addressed using an external validation, which is even more 

robust and involves testing the model under novel circumstances like new clinics, time periods, 

procedures, or populations that weren't employed during model development [50]. Another method 

of internal validation is the geographic validation, often known as the clinic hold-out test.ultimate 

model. The AUC was much lower in Clinics 1 and 4 with young women (Table 1) than it was on the 

test set. Most of the transferred KID embryos for the younger women in these clinics were likely 

very good blastocysts. A more diversified cohort of KID embryos is probably transferred for the 

older mothers in the other facilities.  The AUCs were lower for clinics 1 and 4 because sorting within 

a homogeneous top-quality blastocysts is more challenging than sorting within a more heterogeneous 

collection of KID embryos. Therefore, the variation in AUC is most likely due to a bias in the 

evaluation of pre-selected embryos for transfer rather than a problem with the model's performance. 

Note that a high implantation rate does not always correspond with a high AUC, and vice versa. 

Specifically, a high AUC indicates how well a model classifies embryos within a given cohort. As a 

result, variations in AUCs may be caused by inadequate model generalisation, as well as by 

variations in the patient population and clinical procedures mentioned 

previously.

 
Figure 5: accuracy of  the AI model defined by the data input utilized for model training. 

 

9.CONCLUSION  

According to recent research on AI's use in embryo selection, AI models can predict reproductive 

outcomes and evaluate embryo morphology more accurately than embryologists. It is crucial to 

emphasise that the current accuracies claimed by studies exhibit varying performances because to the 

variety of techniques utilised, sample size, and datasets used for AI validation and training. 

Determining the minimal features of AI models needed for clinical application, as well as the 

accuracy of datasets and AI benchmark performance, are crucial for validation in the IVF industry. 

The top prediction models for clinical outcomes integrated images and clinical data, suggesting that 

including clinical data could enhance the performance of algorithms that just employ time-lapse 

videos or photographs. The most clinically meaningful outcome of ART is a live birth, hence future 

research should concentrate on predicting live births. 

A completely automated deep learning model, called iDAScore v1.0, was created using 115,832 

time-lapse sequences of embryo development. For KID embryos, the selection model's AUC is 0.67. 
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This completely automated model was shown to outperform the most advanced 

morphokineticKIDScore D5 v3 model. The high performance was attained without the 

embryologist's evaluation or annoyance. 
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